//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! adds scalar to a matrix (c = a + s)
//! supports CV_32FC1 and CV_32FC2 type
CV_EXPORTS void add(const GpuMat& a, const Scalar& sc, GpuMat& c);
//! subtracts one matrix from another (c = a - b)
//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! subtracts scalar from a matrix (c = a - s)
//! supports CV_32FC1 and CV_32FC2 type
CV_EXPORTS void subtract(const GpuMat& a, const Scalar& sc, GpuMat& c);
//! computes element-wise product of the two arrays (c = a * b)
//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! multiplies matrix to a scalar (c = a * s)
//! supports CV_32FC1 and CV_32FC2 type
CV_EXPORTS void multiply(const GpuMat& a, const Scalar& sc, GpuMat& c);
//! computes element-wise quotient of the two arrays (c = a / b)
//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! computes element-wise quotient of matrix and scalar (c = a / s)
//! supports CV_32FC1 and CV_32FC2 type
CV_EXPORTS void divide(const GpuMat& a, const Scalar& sc, GpuMat& c);
//! transposes the matrix
//! supports only CV_8UC1 type
CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst);
//! computes element-wise absolute difference of two arrays (c = abs(a - b))
//! supports CV_8UC1, CV_8UC4, CV_32SC1, CV_32FC1 types
CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c);
//! computes element-wise absolute difference of array and scalar (c = abs(a - s))
//! supports only CV_32FC1 type
CV_EXPORTS void absdiff(const GpuMat& a, const Scalar& s, GpuMat& c);
//! compares elements of two arrays (c = a
//! supports CV_8UC4, CV_32FC1 types
CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop);
//! computes mean value and standard deviation of all or selected array elements
//! supports only CV_8UC1 type
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev);
//! computes norm of array
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports only CV_8UC1 type
CV_EXPORTS double norm(const GpuMat& src1, int normType=NORM_L2);
//! computes norm of the difference between two arrays
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports only CV_8UC1 type
CV_EXPORTS double norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2);
//! reverses the order of the rows, columns or both in a matrix
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void flip(const GpuMat& a, GpuMat& b, int flipCode);
//! computes sum of array elements
//! supports CV_8UC1, CV_8UC4 types
//! disabled until fix crash
CV_EXPORTS Scalar sum(const GpuMat& m);
//! finds global minimum and maximum array elements and returns their values
//! supports CV_8UC1 and CV_8UC4 type
//! disabled until fix npp bug
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal = 0);
//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
//! destination array will have the depth type as lut and the same channels number as source
//! supports CV_8UC1, CV_8UC3 types
CV_EXPORTS void LUT(const GpuMat& src, const Mat& lut, GpuMat& dst);
//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst);
//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const vector
//! makes multi-channel array out of several single-channel arrays (async version)
CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst, const Stream& stream);
//! makes multi-channel array out of several single-channel arrays (async version)
CV_EXPORTS void merge(const vector
//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, GpuMat* dst);
//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, vector
//! copies each plane of a multi-channel array to a dedicated array (async version)
CV_EXPORTS void split(const GpuMat& src, GpuMat* dst, const Stream& stream);
//! copies each plane of a multi-channel array to a dedicated array (async version)
CV_EXPORTS void split(const GpuMat& src, vector
//! computes exponent of each matrix element (b = e**a)
//! supports only CV_32FC1 type
CV_EXPORTS void exp(const GpuMat& a, GpuMat& b);
//! computes natural logarithm of absolute value of each matrix element: b = log(abs(a))
//! supports only CV_32FC1 type
CV_EXPORTS void log(const GpuMat& a, GpuMat& b);
//! computes magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitude(const GpuMat& x, GpuMat& magnitude);
//! computes squared magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitudeSqr(const GpuMat& x, GpuMat& magnitude);
//! computes magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude);
//! async version
CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, const Stream& stream);
//! computes squared magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude);
//! async version
CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, const Stream& stream);
//! computes angle (angle(i)) of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees = false);
//! async version
CV_EXPORTS void phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees, const Stream& stream);
//! converts Cartesian coordinates to polar
//! supports only floating-point source
CV_EXPORTS void cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees = false);
//! async version
CV_EXPORTS void cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees, const Stream& stream);
//! converts polar coordinates to Cartesian
//! supports only floating-point source
CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees = false);
//! async version
CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, const Stream& stream);
//! perfroms per-elements bit-wise inversion
CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask=GpuMat());
//! async version
CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, const Stream& stream);
//! calculates per-element bit-wise disjunction of two arrays
CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat());
//! async version
CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream);
//! calculates per-element bit-wise conjunction of two arrays
CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat());
//! async version
CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream);
//! calculates per-element bit-wise "exclusive or" operation
CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat());
//! async version
CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream);
//! Logical operators
CV_EXPORTS GpuMat operator ~ (const GpuMat& src);
CV_EXPORTS GpuMat operator | (const GpuMat& src1, const GpuMat& src2);
CV_EXPORTS GpuMat operator & (const GpuMat& src1, const GpuMat& src2);
CV_EXPORTS GpuMat operator ^ (const GpuMat& src1, const GpuMat& src2);
////////////////////////////// Image processing //////////////////////////////
//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]] with bilinear interpolation.
//! supports CV_8UC1, CV_8UC3 source types and CV_32FC1 map type
CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap);
//! Does mean shift filtering on GPU.
CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
//! Does mean shift procedure on GPU.
CV_EXPORTS void meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
//! Does mean shift segmentation with elimiation of small regions.
CV_EXPORTS void meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize,
TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
//! Supported types of input disparity: CV_8U, CV_16S.
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp);
//! async version
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, const Stream& stream);
//! Reprojects disparity image to 3D space.
//! Supports CV_8U and CV_16S types of input disparity.
//! The output is a 4-channel floating-point (CV_32FC4) matrix.
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q);
//! async version
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, const Stream& stream);
//! converts image from one color space to another
CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0);
//! async version
CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn, const Stream& stream);
//! applies fixed threshold to the image.
//! Now supports only THRESH_TRUNC threshold type and one channels float source.
CV_EXPORTS double threshold(const GpuMat& src, GpuMat& dst, double thresh);
//! resizes the image
//! Supports INTER_NEAREST, INTER_LINEAR
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR);
//! warps the image using affine transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR);
//! warps the image using perspective transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR);
//! rotate 8bit single or four channel image
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0, int interpolation = INTER_LINEAR);
//! copies 2D array to a larger destination array and pads borders with user-specifiable constant
//! supports CV_8UC1, CV_8UC4, CV_32SC1 types
CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, const Scalar& value = Scalar());
//! computes the integral image and integral for the squared image
//! sum will have CV_32S type, sqsum - CV32F type
//! supports only CV_8UC1 source type
CV_EXPORTS void integral(GpuMat& src, GpuMat& sum, GpuMat& sqsum);
//! computes the standard deviation of integral images
//! supports only CV_32SC1 source type and CV_32FC1 sqr type
//! output will have CV_32FC1 type
CV_EXPORTS void rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect);
//! applies Canny edge detector and produces the edge map
//! supprots only CV_8UC1 source type
//! disabled until fix crash
CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double threshold1, double threshold2, int apertureSize = 3);
//////////////////////////////// Filter Engine ////////////////////////////////
/*!
The Base Class for 1D or Row-wise Filters
This is the base class for linear or non-linear filters that process 1D data.
In particular, such filters are used for the "horizontal" filtering parts in separable filters.
*/
class CV_EXPORTS BaseRowFilter_GPU
{
public:
BaseRowFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
virtual ~BaseRowFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst) = 0;
int ksize, anchor;
};
/*!
The Base Class for Column-wise Filters
This is the base class for linear or non-linear filters that process columns of 2D arrays.
Such filters are used for the "vertical" filtering parts in separable filters.
*/
class CV_EXPORTS BaseColumnFilter_GPU
{
public:
BaseColumnFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
virtual ~BaseColumnFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst) = 0;
int ksize, anchor;
};
/*!
The Base Class for Non-Separable 2D Filters.
This is the base class for linear or non-linear 2D filters.
*/
class CV_EXPORTS BaseFilter_GPU
{
public:
BaseFilter_GPU(const Size& ksize_, const Point& anchor_) : ksize(ksize_), anchor(anchor_) {}
virtual ~BaseFilter_GPU() {}
virtual void operator()(const GpuMat& src, GpuMat& dst) = 0;
Size ksize;
Point anchor;
};
/*!
The Base Class for Filter Engine.
The class can be used to apply an arbitrary filtering operation to an image.
It contains all the necessary intermediate buffers.
*/
class CV_EXPORTS FilterEngine_GPU
{
public:
virtual ~FilterEngine_GPU() {}
virtual void apply(const GpuMat& src, GpuMat& dst, Rect roi = Rect(0,0,-1,-1)) = 0;
};
//! returns the non-separable filter engine with the specified filter
CV_EXPORTS Ptr
//! returns the separable filter engine with the specified filters
CV_EXPORTS Ptr
const Ptr
//! returns horizontal 1D box filter
//! supports only CV_8UC1 source type and CV_32FC1 sum type
CV_EXPORTS Ptr
//! returns vertical 1D box filter
//! supports only CV_8UC1 sum type and CV_32FC1 dst type
CV_EXPORTS Ptr
//! returns 2D box filter
//! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type
CV_EXPORTS Ptr
//! returns box filter engine
CV_EXPORTS Ptr
const Point& anchor = Point(-1,-1));
//! returns 2D morphological filter
//! only MORPH_ERODE and MORPH_DILATE are supported
//! supports CV_8UC1 and CV_8UC4 types
//! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
CV_EXPORTS Ptr
Point anchor=Point(-1,-1));
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
CV_EXPORTS Ptr
const Point& anchor = Point(-1,-1), int iterations = 1);
//! returns 2D filter with the specified kernel
//! supports CV_8UC1 and CV_8UC4 types
CV_EXPORTS Ptr
Point anchor = Point(-1, -1));
//! returns the non-separable linear filter engine
CV_EXPORTS Ptr
const Point& anchor = Point(-1,-1));
//! returns the primitive row filter with the specified kernel
CV_EXPORTS Ptr
int anchor = -1);
//! returns the primitive column filter with the specified kernel
CV_EXPORTS Ptr
int anchor = -1);
//! returns the separable linear filter engine
CV_EXPORTS Ptr
const Mat& columnKernel, const Point& anchor = Point(-1,-1));
//! returns filter engine for the generalized Sobel operator
CV_EXPORTS Ptr
//! returns the Gaussian filter engine
CV_EXPORTS Ptr
//! returns maximum filter
CV_EXPORTS Ptr
//! returns minimum filter
CV_EXPORTS Ptr
//! smooths the image using the normalized box filter
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1));
//! a synonym for normalized box filter
static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1)) { boxFilter(src, dst, -1, ksize, anchor); }
//! erodes the image (applies the local minimum operator)
CV_EXPORTS void erode( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
//! dilates the image (applies the local maximum operator)
CV_EXPORTS void dilate( const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
//! applies an advanced morphological operation to the image
CV_EXPORTS void morphologyEx( const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
//! applies non-separable 2D linear filter to the image
CV_EXPORTS void filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1));
//! applies separable 2D linear filter to the image
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY,
Point anchor = Point(-1,-1));
//! applies generalized Sobel operator to the image
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1);
//! applies the vertical or horizontal Scharr operator to the image
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale = 1);
//! smooths the image using Gaussian filter.
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2 = 0);
//! applies Laplacian operator to the image
//! supports only ksize = 1 and ksize = 3
CV_EXPORTS void Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1);
//////////////////////////////// Image Labeling ////////////////////////////////
//!performs labeling via graph cuts
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels, GpuMat& buf);
////////////////////////////////// Histograms //////////////////////////////////
//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type.
CV_EXPORTS void evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel);
//! Calculates histogram with evenly distributed bins for signle channel source.
//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types.
//! Output hist will have one row and histSize cols and CV_32SC1 type.
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel);
//! Calculates histogram with evenly distributed bins for four-channel source.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types.
//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type.
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4]);
//! Calculates histogram with bins determined by levels array.
//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types.
//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type.
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels);
//! Calculates histogram with bins determined by levels array.
//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4]);
//////////////////////////////// StereoBM_GPU ////////////////////////////////
class CV_EXPORTS StereoBM_GPU
{
public:
enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
//! the default constructor
StereoBM_GPU();
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
//! Output disparity has CV_8U type.
void operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity);
//! async version
void operator() ( const GpuMat& left, const GpuMat& right, GpuMat& disparity, const Stream & stream);
//! Some heuristics that tries to estmate
// if current GPU will be faster then CPU in this algorithm.
// It queries current active device.
static bool checkIfGpuCallReasonable();
int preset;
int ndisp;
int winSize;
// If avergeTexThreshold == 0 => post procesing is disabled
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
// i.e. input left image is low textured.
float avergeTexThreshold;
private:
GpuMat minSSD, leBuf, riBuf;
};
////////////////////////// StereoBeliefPropagation ///////////////////////////
// "Efficient Belief Propagation for Early Vision"
// P.Felzenszwalb
class CV_EXPORTS StereoBeliefPropagation
{
public:
enum { DEFAULT_NDISP = 64 };
enum { DEFAULT_ITERS = 5 };
enum { DEFAULT_LEVELS = 5 };
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
//! the default constructor
explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int msg_type = CV_32F);
//! the full constructor taking the number of disparities, number of BP iterations on each level,
//! number of levels, truncation of data cost, data weight,
//! truncation of discontinuity cost and discontinuity single jump
//! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
//! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
//! please see paper for more details
StereoBeliefPropagation(int ndisp, int iters, int levels,
float max_data_term, float data_weight,
float max_disc_term, float disc_single_jump,
int msg_type = CV_32F);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity);
//! async version
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream);
//! version for user specified data term
void operator()(const GpuMat& data, GpuMat& disparity);
void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream);
int ndisp;
int iters;
int levels;
float max_data_term;
float data_weight;
float max_disc_term;
float disc_single_jump;
int msg_type;
private:
GpuMat u, d, l, r, u2, d2, l2, r2;
std::vector
GpuMat out;
};
/////////////////////////// StereoConstantSpaceBP ///////////////////////////
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
// Qingxiong Yang, Liang Wang・ Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/
class CV_EXPORTS StereoConstantSpaceBP
{
public:
enum { DEFAULT_NDISP = 128 };
enum { DEFAULT_ITERS = 8 };
enum { DEFAULT_LEVELS = 4 };
enum { DEFAULT_NR_PLANE = 4 };
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
//! the default constructor
explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
int iters = DEFAULT_ITERS,
int levels = DEFAULT_LEVELS,
int nr_plane = DEFAULT_NR_PLANE,
int msg_type = CV_32F);
//! the full constructor taking the number of disparities, number of BP iterations on each level,
//! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
//! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
int min_disp_th = 0,
int msg_type = CV_32F);
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity);
//! async version
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream);
int ndisp;
int iters;
int levels;
int nr_plane;
float max_data_term;
float data_weight;
float max_disc_term;
float disc_single_jump;
int min_disp_th;
int msg_type;
bool use_local_init_data_cost;
private:
GpuMat u[2], d[2], l[2], r[2];
GpuMat disp_selected_pyr[2];
GpuMat data_cost;
GpuMat data_cost_selected;
GpuMat temp;
GpuMat out;
};
/////////////////////////// DisparityBilateralFilter ///////////////////////////
// Disparity map refinement using joint bilateral filtering given a single color image.
// Qingxiong Yang, Liang Wang・ Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/
class CV_EXPORTS DisparityBilateralFilter
{
public:
enum { DEFAULT_NDISP = 64 };
enum { DEFAULT_RADIUS = 3 };
enum { DEFAULT_ITERS = 1 };
//! the default constructor
explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
//! the full constructor taking the number of disparities, filter radius,
//! number of iterations, truncation of data continuity, truncation of disparity continuity
//! and filter range sigma
DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst);
//! async version
void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream);
private:
int ndisp;
int radius;
int iters;
float edge_threshold;
float max_disc_threshold;
float sigma_range;
GpuMat table_color;
GpuMat table_space;
};
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
struct CV_EXPORTS HOGDescriptor
{
public:
enum { DEFAULT_WIN_SIGMA = -1 };
enum { DEFAULT_NLEVELS = 64 };
enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
double threshold_L2hys=0.2, bool gamma_correction=true,
int nlevels=DEFAULT_NLEVELS);
size_t getDescriptorSize() const;
size_t getBlockHistogramSize() const;
double getWinSigma() const;
static vector
static vector
static vector
void setSVMDetector(const vector
bool checkDetectorSize() const;
void detect(const GpuMat& img, vector
Size win_stride=Size(), Size padding=Size());
void detectMultiScale(const GpuMat& img, vector
double hit_threshold=0, Size win_stride=Size(), Size padding=Size(),
double scale0=1.05, int group_threshold=2);
void getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors,
int descr_format=DESCR_FORMAT_COL_BY_COL);
Size win_size;
Size block_size;
Size block_stride;
Size cell_size;
int nbins;
double win_sigma;
double threshold_L2hys;
int nlevels;
protected:
void computeBlockHistograms(const GpuMat& img);
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
static int numPartsWithin(int size, int part_size, int stride);
static Size numPartsWithin(Size size, Size part_size, Size stride);
bool gamma_correction;
// Coefficients of the separating plane
float free_coef;
GpuMat detector;
// Results of the last classification step
GpuMat labels;
Mat labels_host;
// Results of the last histogram evaluation step
GpuMat block_hists;
// Gradients conputation results
GpuMat grad, qangle;
};
}
//! Speckle filtering - filters small connected components on diparity image.
//! It sets pixel (x,y) to newVal if it coresponds to small CC with size < maxSpeckleSize.
//! Threshold for border between CC is diffThreshold;
CV_EXPORTS void filterSpeckles( Mat& img, uchar newVal, int maxSpeckleSize, uchar diffThreshold, Mat& buf);
0 件のコメント:
コメントを投稿